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Abstract
We study rubber sliding friction on hard lubricated surfaces. We show that even if the hard
surface appears smooth to the naked eye, it may exhibit short-wavelength roughness, which
may make the dominant contribution to rubber friction. That is, the observed sliding friction is
mainly due to the viscoelastic deformations of the rubber by the counterface surface asperities.
The results presented are of great importance for rubber sealing and other rubber applications
involving (apparently) smooth surfaces.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Rubber friction on smooth surfaces is a topic of great practical
importance, e.g., for rubber sealing, wiper blades or for the
contact between a tire and the metal rim [1]. For perfectly
smooth surfaces rubber friction is believed to be due to periodic
cycles of pinning, elastic deformation, and rapid slip of rubber
molecules [2–4] or, more likely, small patches [5] of the rubber
at the sliding interface. In a recent publication, Vorvolakos and
Chaudhury [6] (see also [7, 8]) have studied rubber friction
for a silicone elastomer sliding on extremely smooth Si wafer,
with the root-mean-square roughness ≈0.5 nm, covered by
inert self-assembled monolayer films. The observed friction
as a function of the sliding velocity exhibit a bell-like shape
as expected from theory [2, 5]. However, a surface which
appears smooth to the naked eye may exhibit strong surface
roughness at short length scales, e.g., at the micrometer and
nanometer length scale. This is true even for highly polished
surfaces which may appear perfectly smooth to the naked
eye. When a rubber block slides on a hard surface with
surface roughness, a large contribution to the friction force
may arise from the time-dependent, substrate asperity-induced
deformations of the rubber surface. That is, during sliding the
substrate asperities give rise to pulsating deformations of the
rubber, which will result in energy dissipation because of the
internal friction of the rubber. This is believed to be the major
contribution to the tire-road friction [9, 10]. In this paper we
will show that the roughness of a highly polished steel surface
may also give the dominant contribution to the friction, even
for lubricated surfaces. This result is very important for rubber

sealing applications [11], in particular at low sliding velocities
and low temperatures.

2. Rubber friction: experimental results

Friction tests have been carried out using a reciprocating
tribometer where a steel cylinder (diameter D = 1.5 cm and
length L = 2.2 cm) is squeezed against the substrate (rubber
block, thickness 4 mm), see figure 1. The steel cylinder
performs longitudinal oscillations against the rubber block
with a stroke a = 1 mm and frequency f = 50 Hz. This gives
the average slip velocity v ≈ 0.1 m s−1. The rubber specimens
(acronitrile butadiene rubber (NBR)) have been washed in
industrial petroleum for 3 min by using an ultrasonic cleaner
and then dried for 10 min. The rubber surface has the root-
mean-square roughness ≈0.4 μm, and has parallel grooves
caused during molding of elastomer sheets in steel mold. The
steel cylinder has a root-mean-square roughness of ≈0.1 μm.

Figure 2 shows the power spectrum of the surface
roughness of the steel surface. The power spectrum is defined
by [12]

C(q) =
∫

d2x〈h(x)h(0)〉eiq·x (1)

where 〈..〉 stands for ensemble averaging. Here h(x) is the
surface height at the point x, where we have assumed 〈h(x)〉 =
0. The surface height was measured over different surface areas
using atomic force microscopy and an optical method (3D
optical surface profiler (Wyko NT 1100) in vertical scanning
interferometry mode), and figure 2 was obtained from three
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Figure 1. Test configuration for friction studies under reciprocating
sliding conditions.
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Figure 2. The power spectrum of the surface roughness of the steel
surface. The root-mean-square surface roughness is about 0.1 μm.
The straight line has a slope corresponding to the fractal dimension
Df ≈ 2.66.

different measurements involving different resolution. The
straight (green) line has a slope corresponding to the fractal
dimension Df ≈ 2.66. In the calculations of the friction
presented below we have used the this linear approximation
and included the surface roughness power spectra over the full
wavevector range shown in the figure. Thus the longest and
the shortest wavelength roughness included in the analysis is
λ0 = 2π/q0 ≈ 0.3 mm and λ1 = 2π/q1 ≈ 6 nm.

The experimental results presented in figures 5 and 6 were
obtained for the load FN = 100 N and with a test duration
of 15 min. Since the oscillation stroke is very small (1 mm)
one expects that most of the oil is squeezed out from the steel
cylinder–rubber contact region.

The viscoelastic modulus E(ω) has been measured (using
Eplexor 150) using a rectangular rubber block 5×2×30 mm3.
The measurements were done in tension with 8% of prestrain
and 1.3% of dynamic strain amplitude. Figure 3 shows
the logarithm of the real part of the viscoelastic modulus
of the acronitrile butadiene rubber used in the present study,
as a function of the logarithm of the frequency ω, for the
temperatures T = 50 and 80 ◦C.

The diameter d of the contact region between the steel
cylinder and the rubber substrate can be estimated using the
Hertz contact theory for bodies with cylinder geometry, see
figure 4. For elastic solids, the diameter d of the contact area
is given by [13]

d = 2

(
2FN D

π L E∗

)1/2

, (2)

where E∗ = E/(1 − ν2) (where E is the Young modulus and
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Figure 3. The logarithm of (a) the real part and (b) the imaginary
part of the viscoelastic modulus as a function of the logarithm of the
frequency ω for the temperatures T = 50 and 80 ◦C. For acronitrile
butadiene rubber.
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Figure 4. Steel cylinder squeezed in contact to a rubber substrate.

ν the Poisson ratio). The average pressure in the contact region
is

p̄ = 1

2

(
π FN E∗

2L D

)1/2

. (3)

For FN = 100 N and for T ≈ 50 ◦C we have (see figure 3)
E∗ ≈ 10 MPa (where we have assumed the frequency ω ≈
10−3 s−1, corresponding to the contact time ∼1000 s) giving
d ≈ 0.4 cm and p̄ ≈ 1 MPa.

Figure 5 shows the measured friction coefficients for the
steel cylinder sliding against non-aged rubber in 11 different
lubrication oils with very different viscosities. Thus, for
example, the PAO1 and PAO2 oils have the viscosities (at T =
40 ◦C) 4.4 × 10−3 and 22.8 × 10−3 Pa s, respectively. In
spite of the large difference in viscosities, the rubber friction
coefficients are nearly equal. This indicates that the rubber
friction is not (mainly) due to shearing a thin viscous layer,
but due to the internal friction of the rubber (see below).

2
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Figure 5. Coefficient of friction of non-aged samples in different base oils. For the load FN = 100 N.

Figure 6. Coefficient of friction of aged samples in different base oils. For the load FN = 100 N.

Figure 6 shows the measured friction coefficients for aged
rubber. The aged rubber samples were prepared by immersing
them in different base fluids at T = 125 ◦C for one week.
NBR rubber has polar nitrile groups and non-polar oils such
as naphthenic have nearly no effect on the properties of NBR
rubber, and this explained why rubber aged in naphthenic
exhibits nearly the same friction as for non-aged NBR rubber
(compare figure 5 with figure 6). However, oils with polar
groups, e.g. polyol ester, will diffuse into the rubber which
may reduce the internal friction of the rubber. In addition,
when the rubber block is squeezed against the counterface,
oil may be squeezed out from the rubber matrix, giving a
thicker oil film at the interface and thus lower the friction (a
similar effect is believed to contribute to the extremely low
friction exhibited by human joints [16]). We believe that both
effects may contribute to why NBR rubber aged in polyol ester
exhibits much smaller friction than the non-aged rubber.

Figures 7–9 show the friction coefficient for different
loads and temperatures. Here the temperature refers to the
background temperature, which was varied by contacting
the back-side of the rubber block to a metal block with
the given temperature. (The temperature in the sliding
contact is not known, but will be higher due to the frictional
heating.) Note that as the temperature increases the friction
decreases. This cannot result from the change in viscosity of
the lubricant oil since we already know from above that the
lubricant viscosity has a negligible influence on the friction,
at least for the squeezing force FN = 100 N, see figure 5.
However, we will show in section 3 that the temperature
dependence of the sliding friction can be understood from
the temperature dependence of the internal friction of the
rubber. Thus, when the temperature increases the rubber
becomes more elastic (less viscous) and the internal friction
decreases.

3
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Figure 7. Friction coefficient as a function of load at the background
temperature T = 25 ◦C.

Figure 8. Friction coefficient as a function of load at the background
temperature T = 40 ◦C.

The dependence of the rubber friction on the load can be
understood as follows. For very small load (FN = 20 N)
the average pressure in the contact area (see equation (3))
is relative low and the grooves on the rubber surface will
not be (fully) elastically flattened, and will trap lubricant
oil, which may be pulled into the contact area during each
oscillation. This will result in an oil film which is thick
enough to reduce the rubber–steel asperity contact and hence
lower the viscoelastic contribution to the friction. This drag
of lubricant fluid into the contact area is particularly large
when the oscillation direction is perpendicular to the grooves
on the rubber surface [14], and this explains why the friction
for small load is much lower for perpendicular sliding than
parallel sliding. However, for high load (FN � 100 N) there
is negligible difference between parallel and perpendicular
sliding, indicating that the lubricant has a negligible direct
influence on the friction.

The drop in the friction for large load is most likely due to
the increase in the temperature caused by the frictional heating.
This effect becomes more important as the load increases, and
explains why the friction decreases for high load. At lower
sliding velocity (or oscillation frequency) the heating effects
become less important (because of heat diffusion) and in this
case one expects a smaller drop in the friction coefficient with
increasing load. We plan to test this prediction experimentally.

Figure 9. Friction coefficient as a function of load at the background
temperature T = 80 ◦C.

Figure 10 shows the friction coefficients (for the load
FN = 100 N) at T = 40 and 80 ◦C for the same base oil
but with different additives. As expected, there is negligible
dependence of the friction on the additives. The reason for this
is the same as before: the observed friction is mainly due to the
internal friction of the rubber which does not change between
the different experiments. That is, although the additives in the
base oil may adsorb on the solid surfaces and act as boundary
lubricants, the result of the study above indicates that such
(mono) layers have negligible influence on the friction.

3. Rubber friction: theory

We have calculated the dependence of the rubber friction on the
sliding velocity and the temperature using the theory presented
in [9]. The theory assumes that the friction is entirely due to
the viscoelastic deformation of the rubber, which results from
the pulsating deformations from the substrate asperities. The
only inputs in the calculations are the counterface roughness
power spectrum (see figure 2) and the rubber viscoelastic
modulus. We have measured the viscoelastic modulus E(ω)

of the rubber as a function of frequency (and temperature). In
the calculations we do not take into account the lubrication oil
directly (but it influences the friction indirectly by reducing (or
removing) the adhesion between the solid walls [15]). We have
assumed the nominal contact pressure of 1 MPa.

Neglecting the flash temperature, the friction coefficient is
given by [9]

μ = 1

2

∫
dq q3C(q)P(q)

∫ 2π

0
dφ cosφ Im

E(qv cosφ)

(1 − ν2)σ

where

P(q) = 2

π

∫ ∞

0
dx

sinx

x
exp

[−x2G(q)
] = erf

(
1/2

√
G

)

with

G(q) = 1

8

∫ q

0
dq q3C(q)

∫ 2π

0
dφ

∣∣∣∣ E(qv cosφ)

(1 − ν2)σ

∣∣∣∣
2

where σ is the perpendicular pressure (the load divided by the
nominal contact area).

4



J. Phys.: Condens. Matter 20 (2008) 085223 M Mofidi et al

Figure 10. Friction coefficient for one base oil with several different additives and for T = 40 and 80 ◦C. For the load FN = 100 N.
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Figure 11. The steady state kinetic friction coefficient calculated
using the measured surface roughness power spectrum (from
figure 2) and the measured viscoelastic modulus of the rubber. For
the background temperatures 50 and 80 ◦C, and the nominal
squeezing pressure p = 1 MPa.

Figure 11 shows the steady state kinetic friction coefficient
calculated using the measured surface roughness power
spectrum (from figure 2) and the measured viscoelastic
modulus of the rubber. Results are presented for the
background temperatures 50 and 80◦C. Note that the
magnitude of the calculated friction coefficient at the sliding
velocity ∼0.1–1 m s−1 is similar to what is observed
experimentally, and also the temperature dependence is in good
agreement with the measurements (see section 2).

In figure 12 we show (a) the friction coefficient μk, and (b)
the logarithm of the (normalized) contact area A/A0 (where
A is the contact area observed at the highest magnification,
and A0 is the nominal or apparent contact area), as a
function of the logarithm of the large-wavevector cut-off q1

(in the calculations we only include surface roughness with
wavevectors q0 < q < q1).

Results are presented for two different temperatures T =
50 and 80 ◦C and for the sliding velocity v = 1 m s−1.
The figure shows that the long-wavelength roughness gives a
negligible contribution to the friction. The reason for why only
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Figure 12. The friction coefficient μk (a) and the logarithm of the
(normalized) contact area A/A0 (b), as a function of the logarithm of
the large-wavevector cut-off q1 (in units of the low-wavevector
cut-off q0). In the calculations we only include surface roughness
with wavevectors q0 < q < q1. Results are presented for two
different temperatures T = 50 and 80 ◦C and for the sliding velocity
v = 1 m s−1.

the short-wavelength roughness is important in the present case
is the large fractal dimension (Df ≈ 2.7) of the steel surface,
which implies that the ratio between the amplitude and the
wavelength of the surface roughness strongly increases as the
wavelength decreases4, and this makes the short-wavelength

4 For a self affine fractal surface the ratio between the height h(λ) and
wavelength λ of the surface roughness component with wavevector q = 2π/λ

is h/λ ∼ λ2−Df . Thus the larger the fractal dimension Df > 2, the faster the
ratio h/λ and will increase as the wavelength decreases, and this will tend to
increase the importance of the short-wavelength roughness.
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h(t)
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hard solid
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fluid

d

Figure 13. A block squeezed against a substrate in a fluid. The
separation between the bottom surface of the block and the top
surface of the substrate is denoted by h(t).

roughness much more important than the long-wavelength
roughness.

4. Squeeze-out

We have argued above that the observed rubber friction can
be explained as resulting from the viscoelastic deformations
of the rubber by the countersurface asperities. In this section
we briefly address the role of the lubrication oil. We first note
that the oil will effectively eliminate the adhesive interaction
between the rubber and the countersurface [15]. Most of the
oil will be squeezed out from the steel–rubber contact area, but
a molecular thin layer may remain even after long squeezing
time.

Consider first a flat rigid rectangular block squeezed
against a flat hard countersurface with the nominal (or average)
pressure p in a lubrication fluid with the viscosity η. The
separation between the surfaces after the time t is (see
figure 13) [16]

h(t) ≈ (η/2pt)1/2d. (4)

Here d is the width of the bottom surface of the block and
we assume that d 
 L, where L is the length of the bottom
surface of the block. With d ≈ 0.4 cm, p ≈ 1 MPa and with
t = 1000 s we get with the typical viscosity η ≈ 0.01 Pa s,
h(t) ≈ 4 nm. For surfaces with roughness the squeeze-out
from asperity contact regions is even faster, but in this case
some liquid may get ‘trapped’ in sealed off regions [17]. For
non-aged rubber the trapped islands may disappear because of
diffusion of lubricant oil into the rubber matrix, see figure 14.
The shear stress developed in a fluid film with thickness h is
σ = ηv/h. In the present case, if v = 0.1 m s−1 and h =
10 nm we get σ = 0.1 MPa which would give a contribution
to the friction coefficient of order σ/p ≈ 0.1. However, the
thickness of the oil film will be very non-uniform, and in many
regions (cavity regions) at the interface the film may be much
thicker than 10 nm (see below), and shearing the lubricant
film in these regions will give a negligible contribution to the
friction. In other regions, where the steel asperities make direct
contact with the rubber, the local squeezing pressure is much
higher than the average pressure, and in these regions at most a
few monolayers of oil film will remain trapped. Nevertheless,
since the region of direct wall–wall contact is only a small
fraction of the nominal contact area, the contribution to the

rubber

hard solid

oil

Figure 14. A rubber block squeezed against a substrate in an oil. The
oil is partly squeezed out at the external boundaries of the nominal
contact area and partly transfered to (or from) the rubber matrix.

0 40 8020 60
0

0.01

0.02

0.03

u (nm)

_ P
   

(1
/n

m
)

u

Figure 15. The calculated probability distribution P̄u of surface
separations u.

friction from shearing the confined thin layers appears to be
negligible (see section 2).

Figure 15 shows the probability distribution P̄u of surface
separations u. This function has been calculated as outlined
in [18]. In the calculation we have assumed a rubber elastic
modulus E = 100 MPa which correspond to the temperature
T = 40 ◦C and the perturbing frequencies ω ≈ 106 s−1 (see
figure 2), which is a typical perturbing frequency (ω = qv)
from surface roughness with wavevector q = 107 m−1 and
sliding velocity v = 0.1 m s−1. In the calculation we have
neglected the direct influence of the lubrication oil, but it is
accounted for indirectly by neglecting the adhesive interaction
between the rubber and the steel surface. Using P̄u we can give
a more accurate estimate of the contribution from the oil film
to the shear stress. We get the viscous shear stress

σ ≈ ηv

∫ ∞

uc

du
P̄u

u
(5)

where uc is a cut-off length of order ∼1 nm since molecular
thin lubrication films cannot be described by the continuum
theory of fluid mechanics [17]. We note that P̄u has a delta
function at the origin u = 0, but in the present case this carries
the weight A(ζ1)/A0 ≈ 0.01 and the contribution from the area
of real contact to the friction force can be neglected. Using the
calculated P̄u (see figure 15), and assuming η = 0.01 Pa s
and v = 0.1 m s−1, equation (5) gives σ ≈ 0.06 MPa so
the contribution to the friction from the lubricant film is very
small, of order 0.06 (where we have assumed the normal stress
p = 1 MPa). We note that this is likely to be an overestimation

6
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of the contribution of the oil film to the friction coefficient,
as the oil film may tend to slightly increase the separation
between the walls, and also because we have not accounted
for the roughness on the rubber surface in the analysis.

5. Discussion

When a block of a viscoelastic solid, such as rubber, is sliding
on a hard rough countersurface, the largest contribution to
the sliding friction is usually derived from the time-dependent
deformations of the rubber by the countersurface asperities.
This is the case, for example, for the tire-road contact. Here
we have shown that even a highly polished countersurface,
which may appear mirror-smooth to the naked eye, may have
enough surface roughness at short length scale to give a large
contribution to rubber friction. This result has many important
applications, e.g., in the context of rubber sealing.

In many rubber sealing applications the rubber surface
and the (lubricated) countersurface are squeezed together for
a long time between the slip events. Furthermore, during the
onset (and stop) of sliding the slip velocities will be very small.
This may result in nearly complete squeeze-out of the lubricant
film. Thus, at some point in time slip will occur between what
is effectively unlubricated surfaces. This may result in high
friction and large wear, and perhaps failure of the seal with
potentially serious consequences.

Note that with respect to sliding friction there is an
asymmetry between roughness on the countersurface and
on the rubber block. Thus, only roughness on the hard
countersurface will contribute to the friction force. Roughness
on the rubber surface may in fact lower the sliding friction by
trapping lubrication fluid. On the other hand, with respect to
stationary contact mechanics, roughness on the two surfaces
plays a similar role [13, 19].

There is an important difference between rubber friction
on very rough surfaces, such as a road surface, and
rubber friction on smoother surfaces with only short-
wavelength roughness. On very rough surfaces, as the
magnification increases we observe smaller and smaller
rubber-countersurface asperity contact regions, and the local
stress and temperature will rapidly increase until the limit of
strength of the rubber has been reached. For tread rubber in
contact with road surfaces this limit is reached at the length
scale (or resolution) λc ≈ 1–10 μm, and at this length scale
during slip strong wear processes occur. The rubber friction
on road surfaces can be explained by including the viscoelastic
deformations of the rubber from road surface roughness with
wavelength down to λc. On the other hand, for surfaces with
mainly short-wavelength roughness, such as the steel surface
used in the present study, it may be necessary to include
roughness with wavelength down to the molecular length scale,
e.g., the distance between cross links in the rubber which
typically is of order a few nanometers. This may result in
different wear mechanisms and wear rates than on surfaces
with large long-wavelength roughness.

The results presented in this paper may also be relevant
for the adhesion and locomotion of some animals on rough
substrates. Thus, some animals, such as grasshoppers

and tree frogs, have smooth attachment pads built from
a (non-compact) material which is highly viscoelastic (like
rubber) [20]. Furthermore, the toe pad–substrate contact
region is wet (lubricated) with a liquid injected into the
contact area by the animal. The liquid viscosity, the nominal
squeezing pressure, and the size and shape of the contact
area differ from the lubricated rubber–counterface contact
problem studied above, but some of the results presented above
may nevertheless be relevant for the animal toe pad–substrate
interaction problem [21, 22].

6. Summary and conclusion

We have presented a combined experimental–theoretical study
of rubber sliding friction against hard lubricated surfaces. We
have shown that even if the hard surface appears smooth to the
naked eye, it may exhibit short-wavelength roughness, which
may give the dominant contribution to rubber friction. The
presented results may be of great importance for rubber sealing
and other rubber applications involving (apparently) smooth
surfaces.
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[10] Klüppel M and Heinrich G 2000 Rubber Chem. Technol. 73
578
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